CS249: ADVANCED DATA MINING

Recommender Systems

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

May 17, 2017

Methods Learnt: Last Lecture

	Vector Data	Text Data	Recommender System	Graph & Network
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; NN			Label Propagation
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means	PLSA; LDA	Matrix Factorization	SCAN; Spectral Clustering
Prediction	Linear Regression GLM		Collaborative Filtering	
Ranking				PageRank
Feature Representation		Word embedding		Network embedding

Methods to Learn

	Vector Data	Text Data	Recommender System	Graph & Network
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; NN			Label Propagation
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means	PLSA; LDA	Matrix Factorization	SCAN; Spectral Clustering
Prediction	Linear Regression GLM		Collaborative Filtering	
Ranking				PageRank
Feature Representation		Word embedding		Network embedding

Recommender Systems

- What is Recommender System? 🦊
- Collaborative Filtering
- Content-based Recommendation
- Hybrid methods
- Evaluation Metrics
- Summary

Recommender Systems

Application areas

You may also like

ALTERNATIVE PRODUCTS

Beko Washing Machine Code: WMB81431LW £269.99

Zanussi Washing Machine Code: ZWH6130P £269.99

Blomberg Washing Machine Code: WNF6221 £299.99

Related hotels...

Hotel 41

London, England

00000 1.170 Reviews

Show Prices

You may also like

☆☆☆☆☆☆(33)

MOST POPULAR RECOMMENDED

How to Break NRA's Grip on Politics: Michael R.

Growth in U.S. Slows as Consumers Restrain

In the Social Web

	Technical Sales Manager - Europe Thermal Transfer Products - Home office	>
Johnson Controls	Senior Program Manager (f/m) Johnson Controls - Germany-NW-Burscheid	>
Groups	You May Like More »	
a state	 Advances in Preference Handling Join 	
7	 FP7 Information and Communication Technologies (ICT) Join 	
The state	 The Blakemore Foundation Join 	
Picc	ISO ^{**} -Webalben Startseite Meine Fotos Erkunden ±. Hochladen	
Empfohle	ene Fotos Alle anzeigen	

Why using Recommender Systems?

- Value for the customer
 - Find things that are interesting
 - Narrow down the set of choices
 - Help me explore the space of options
 - Discover new things
 - Entertainment
 - •
- Value for the provider
 - Additional and probably unique personalized service for the customer
 - Increase trust and customer loyalty
 - Increase sales, click trough rates, conversion etc.
 - Opportunities for promotion, persuasion
 - Obtain more knowledge about customers

• ...

Matrix Representation

Sparse Matrix

• Explicit Feedback

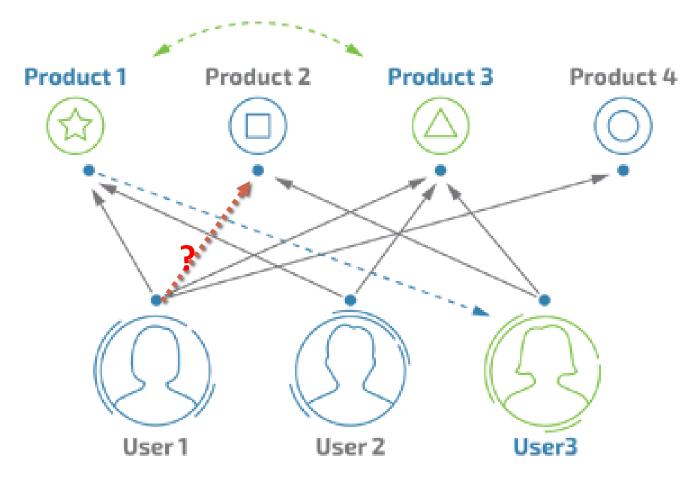
Users	Moviel	Movie2	Movie3	Movie4	Movie5	Movie6	
Userl	?	?	4	?	1	?	
User2	2	5	2	?	?	2	
User3	?	?	5	3	2	4	•••
User4	1	?	?	4	?	?	•••
User5	2	3	?	?	?	?	
							•••

• Implicit Feedback: only know whether user and item has interacted

			Items			
Users	Alice	1	1	0	0	
CSCIS	Bob	0	0	1	1	
	Corey	1	0	1	0	

A Network Point of View

Link prediction problem



Methods

- Collaborative filtering
- Content-based recommendation
- Hybrid methods

Recommender Systems

- What is Recommender System?
- Collaborative Filtering 🦊
- Content-based Recommendation
- Hybrid methods
- Evaluation Metrics
- Summary

Collaborative Filtering (CF)

- The most prominent approach to generate recommendations
 - used by large, commercial e-commerce sites
 - well-understood, various algorithms and variations exist
 - applicable in many domains (book, movies, DVDs, ..)

Approach

- use the "wisdom of the crowd" to recommend items
- Basic assumption and idea
 - Users give ratings to catalog items (implicitly or explicitly)
 - Customers who had similar tastes in the past, will have similar tastes in the future

Major Methods for CF

- Memory-based Collaborative Filtering
 - User-based CF
 - Compute similarity between users and active users, and use similar users' ratings as prediction
 - Item-based CF
 - Compute similarity between items, and predict similar rating to similar items that the active user has rated before
- Model-based Collaborative Filtering

User-based Collaborative Filtering

- Define similarity between users according to the history matrix
- 2. Decide how many "peers" to consider
- 3. Use peers' ratings to predict the rating between an active user and an item

	ltem1	ltem2	ltem3	ltem4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

(1) Define Similarities between Users

Pearson correlation between user a and b

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

- $r_{a,p}$: rating of user a to item p
- P: a set of items that are rated by both a and b
- $\overline{r_a}$, $\overline{r_b}$: average rating of user a and b

• Or,
$$sim(a, b) = \frac{cov(r_a, r_b)}{\sigma(r_a)\sigma(r_b)}$$

- $cov(r_a, r_b)$: covariance between a and b
- $\sigma(r_a)$, $\sigma(r_b)$: standard deviation of a and b

Example

•
$$sim(Alice, User1)$$

• $\overline{r_{Alice}} = \frac{5+3+4+4}{4} = 4; \sigma(Alice) = 0.707$
• $\overline{r_{User1}} = \frac{3+1+2+3}{4} = 2.25; \sigma(User1) = 0.9574$
• $cov(Alice, User1) = 0.6667;$

• => $sim(Alice, User1) = \frac{0.6667}{0.707 * 0.9574} = 0.8528$

	ltem1	ltem2	Item3	Item4	Item5	
Alice	5	3	4	4	?	sim = 0.85
User1	3	1	2	3	3	sim = 0.70 sim = -0.79
User2	4	3	4	3	5	
User3	3	3	1	5	4	
User4	1	5	5	2	1	-

(2) Decide how many peers to use

- Usually only use top K most similar users for prediction
 - i.e., based on top-K most similar users' rating for an item

(3) Predict the rating

• A common prediction function:

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a,b) * (r_{b,p} - \overline{r_b})}{\sum_{b \in N} sim(a,b)}$$

- Calculate, whether the neighbors' ratings for the unseen item *i* are higher or lower than their average
- Combine the rating differences use the similarity as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Example

- Use top-2 neighbor for prediction
 - Alice's top-2 neighbor are User1 and User2
 - $pred(Alice, Item5) = \overline{r_{Alice}} + \frac{sim(Alice, User1)(r_{User1, Item5} \overline{r_{User1}}) + sim(Alice, User2)(r_{User2, Item5} \overline{r_{User2}})}{sim(Alice, User1) + sim(Alice, User2)}$ = $4 + \frac{0.85*(3-2.25)+0.70*(5-3.5)}{0.85+0.70} = 5.0887$

	ltem1	ltem2	ltem3	ltem4	ltem5	
Alice	5	3	4	4	?	sim = 0.85
User1	3	1	2	3	3	sim = 0.70
User2	4	3	4	3	5	
User3	3	3	1	5	4	
User4	1	5	5	2	1	

Model-based Collaborative Filtering

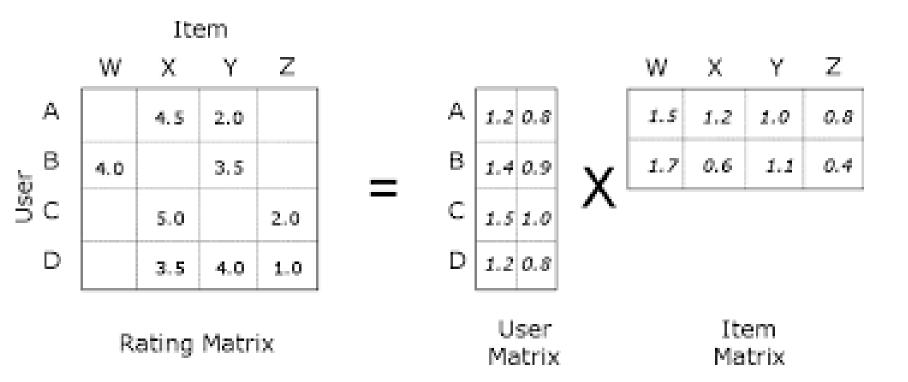
- User-based CF is said to be "memory-based"
 - the rating matrix is directly used to find neighbors / make predictions
 - does not scale for most real-world scenarios
 - large e-commerce sites have tens of millions of customers and millions of items

Model-based approaches

- based on an offline pre-processing or "model-learning" phase
- at run-time, only the learned model is used to make predictions
- models are updated / re-trained periodically
- large variety of techniques used
- model-building and updating can be computationally expensive

Matrix Factorization for Recommendation

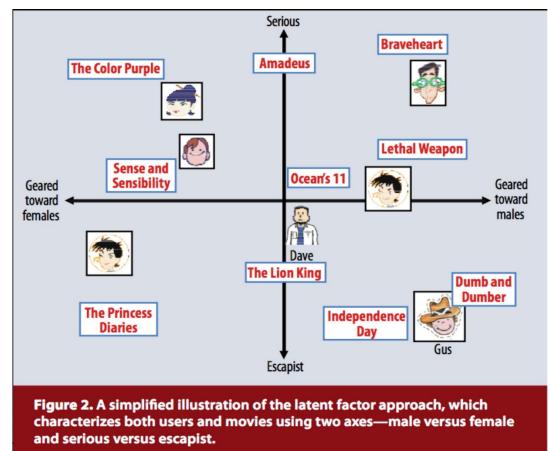
Map users and items into the same latent space



Reference: Koren et al., "Matrix Factorization Techniques for Recommender System", Computer (Volume: 42, Issue: 8), 2009

Now users and items are comparable

 Recommendation: find items that are close to users in the new space



Procedure

Training stage

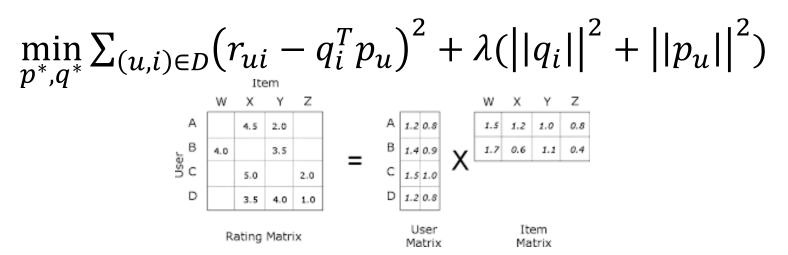
• Use existing matrix to learn the latent feature vector for both users and items by matrix factorization

Recommendation stage

• Predict the score for unknown (user, item) pairs

Training Stage

- • r_{ui} : the rating from u to i
- p_u : the latent feature vector for user u
- q_i : the latent feature vector for item I
- \hat{r}_{ui} : score function for (u,i), $\hat{r}_{ui} = q_i^T p_u$
- Objective function:



Learning Algorithm

- Stochastic gradient descent
- For each rating (u, i):
 - update $p_u: p_u \leftarrow p_u + \eta \cdot ((r_{ui} \hat{r}_{ui})q_i \lambda p_u)$
 - update $q_i: q_i \leftarrow q_i + \eta \cdot \left((r_{ui} \hat{r}_{ui}) p_u \lambda q_i \right)$
 - Where η is the learning rate

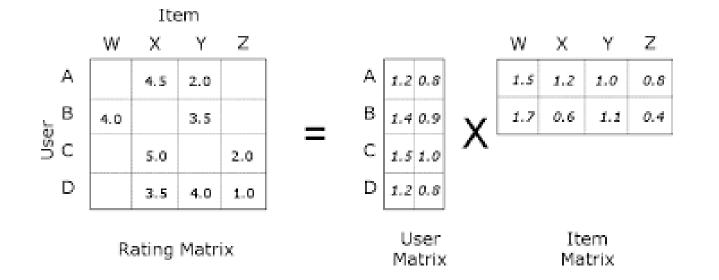
Prediction Stage

• For an unseen pair (u, i)

$$\bullet \hat{r}_{ui} = q_i^T p_u = p_u^T q_i$$

• Example:

• $r_{AW} = p_A^T q_W = 1.2 * 1.5 + 0.8 * 1.7 = 3.16$



Variations

Adding biases

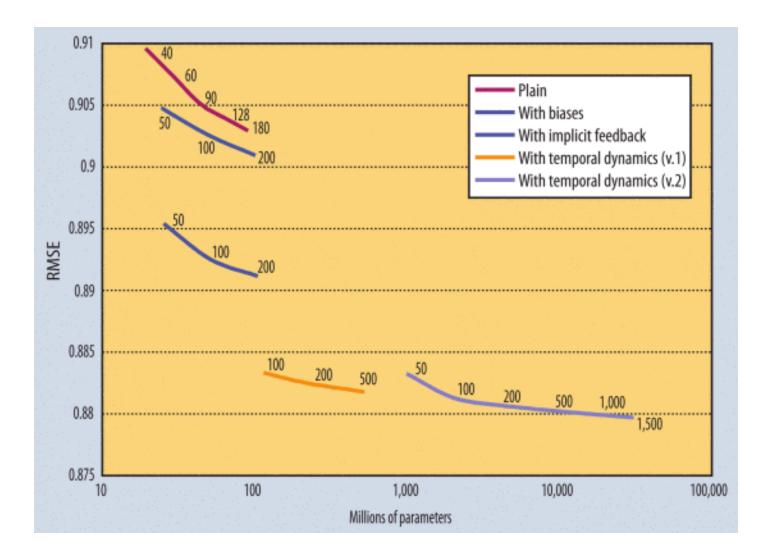
- $\bullet b_{ui} = \mu + b_i + b_u$
- $\bullet \hat{r}_{ui} = \mu + b_i + b_u + q_i^T p_u$
- Objective function:

$$\min_{\substack{p^*, q^*, b^*}} \sum_{(u,i)\in D} (r_{ui} - \mu - b_i - b_u - q_i^T p_u)^2 + \lambda (||q_i||^2 + ||p_u||^2 + \sum_u b_u^2 + \sum_i b_i^2)$$

Adding temporal dynamics

•
$$\hat{r}_{ui}^{(t)} = \mu + b_i(t) + b_u(t) + q_i^T p_u(t)$$

Results



Implicit Feedback Models

- Only implicit signals are received
 - E.g., click though, music streaming play
- Methods:
 - Turn it into binary classification problem: Logistic Matrix Factorization
 - Johnson, Logistic Matrix Factorization for Implicit Feedback Data, NIPS workshop 2014
 - Turn it into ranking problem: BPR: Bayesian Personalized Ranking
 - Rendel et al., BPR: Bayesian Personalized Ranking from Implicit Feedback, UAI'09

• Model:

$$p(l_{ui} \mid x_u, y_i, \beta_i, \beta_j) = \frac{\exp(x_i y_i^T + \beta_u + \beta_i)}{1 + \exp(x_u y_i^T + \beta_u + \beta_i)}$$

Loss function

• For each user-item pair: $J_{ui} = -\mathbf{1}_{(l_{ui}=1)} \log (l_{ui} = 1) - \mathbf{1}_{(l_{ui}=0)} \log (l_{ui} = 0)$

Bayesian Ranking

• Data re-arrangement:

• $D_s = \{(u, i, j) | i \in I_u^+ \text{ and } j \in I \setminus I_u^+\}$

• For user u, s/he ranks item i higher than j,

• Model:

ľ

$$p(i >_{u} j | \Theta) = \sigma(\hat{x}_{uij}(\Theta))$$

where $\hat{x}_{uij} = \hat{x}_{ui} - \hat{x}_{uj}$ and $\hat{x}_{ui} = \langle \mathbf{w}_{u}, \mathbf{h}_{i} \rangle$

Loss Function

$$\prod_{u \in U} p(>_u |\Theta) = \prod_{(u,i,j) \in U \times I \times I} p(i >_u j |\Theta)^{\delta((u,i,j) \in D_S)} \cdot (1 - p(i >_u j |\Theta))^{\delta((u,j,i) \notin D_S)}$$

Issues of CF

- Cold Start: There needs to be enough other users already in the system to find a match.
- Sparsity: If there are many items to be recommended, even if there are many users, the user/ratings matrix is sparse, and it is hard to find users that have rated the same items.
- First Rater: Cannot recommend an item that has not been previously rated.
 - New items
 - Esoteric items
- Popularity Bias: Cannot recommend items to someone with unique tastes.
 - Tends to recommend popular items.

Recommender Systems

- What is Recommender System?
- Collaborative Filtering
- Content-based Recommendation *(*
- Hybrid methods
- Evaluation Metrics
- Summary

Content-based recommendation

- Collaborative filtering does NOT require any information about content,
 - However, it might be reasonable to exploit such information
 - E.g. recommend fantasy novels to people who liked fantasy novels in the past
- What do we need:
 - Some information about the available items such as the genre ("content")
 - Some sort of *user profile* describing what the user likes (the preferences)
- The task:
 - Learn user preferences
 - Locate/recommend items that are "similar" to the user preferences

Content representation and item similarities

		Type	Price	Keywords
Memoir	David Carr	Paperback	29.90	Press and jour- nalism, drug addiction, per- sonal memoirs, New York
Fiction, Mystery	Brunonia Barry	Hardcover	49.90	American contem- porary fiction, de- tective, historical
Romance, Suspense	Suzanne Brock- mann	Hardcover	45.90	American fic- tion, Murder, Neo-nazism
	Mystery Romance,	Fiction, Brunonia Mystery Barry Romance, Suzanne Suspense Brock-	Fiction, Brunonia Hardcover Mystery Barry Romance, Suzanne Hardcover Suspense Brock-	Fiction, Brunonia Hardcover 49.90 Mystery Barry Romance, Suzanne Hardcover 45.90 Suspense Brock-

User profile

Item

Simple approach

Compute the similarity of an unseen item with the user profile based on the keyword overlap (e.g. using the Dice coefficient)

Follet. ..

- $sim(b_i, b_j) = \frac{2 * |keywords(b_i) \cap keywords(b_j)|}{|keywords(b_i)| + |keywords(b_j)|}$
- Other advanced similarity measure

Recommender Systems

- What is Recommender System?
- Collaborative Filtering
- Content-based Recommendation
- Hybrid methods 🦊
- Evaluation Metrics
- Summary

Hybrid Methods

 Combining both user-item interaction and other external sources of information

- •One example:
 - Factorization Machines
 - Steffen Rendle, "Factorization Machines," in ICDM'10, Sydney, Australia.

Factorization Machines

- Treat each user-item transaction as one data point
 - U = {Alice (A), Bob (B), Charlie (C), ...}
 - I = {Titanic (TI), Notting Hill (NH), Star Wars (SW), Star Trek (ST), . .}
 - S = {(A, TI, 2010-1, 5), (A,NH, 2010-2, 3), (A, SW, 2010-4, 1), (B, SW, 2009-5, 4), (B, ST, 2009-8, 5), (C, TI, 2009-9, 1), (C, SW, 2009-12, 5)}

FM: Feature Preparation

• Each data point has a feature vector **x**, and a target value (e.g., rating score)



The Model

Model second-order interaction to overcome the sparsity

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

- w₀: global bias
- w_i: strength of ith variable
- $\widehat{w}_{ij} = \langle v_i, v_j \rangle$
 - : strength of the interaction of ith and jth variable
 - E.g., interaction between Alice and Titanic, or Alice and Bob

Time Complexity of Second-Order Interaction

•O(kn)

• k: dimension of *v*; n: dimension of *x*

 $\sum \sum \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$ $i=1 \ i=i+1$ $=\frac{1}{2}\sum_{i=1}^{n}\sum_{i=1}^{n}\langle \mathbf{v}_{i},\mathbf{v}_{j}\rangle x_{i}x_{j} - \frac{1}{2}\sum_{i=1}^{n}\langle \mathbf{v}_{i},\mathbf{v}_{i}\rangle x_{i}x_{i}$ $= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{j,f} x_i x_j - \sum_{i=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{i,f} x_i x_i \right)$ $= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_i \right) \left(\sum_{i=1}^{n} v_{j,f} x_j \right) - \sum_{i=1}^{n} v_{i,f}^2 x_i^2 \right)$ $=\frac{1}{2}\sum_{i=1}^{k}\left(\left(\sum_{i=1}^{n}v_{i,f}x_{i}\right)^{2}-\sum_{i=1}^{n}v_{i,f}^{2}x_{i}^{2}\right)$

Apply to Recommendation

- Explicit Feedback:
 - Treat it as a prediction task, with mean square error loss
- Implicit Feedback:
 - Treat it as a binary classification or ranking task, with logistic loss or pairwise logistic loss

- •Learning:
 - Stochastic gradient descent

Recommender Systems

- What is Recommender System?
- Collaborative Filtering
- Content-based Recommendation
- Hybrid methods
- Evaluation Metrics
- Summary

Accuracy measures: Explicit Feedback

- Datasets with items rated by users
 - MovieLens datasets 100K-10M ratings
 - Netflix 100M ratings
- Historic user ratings constitute ground truth
- Metrics measure error rate
 - Mean Absolute Error (*MAE*) computes the deviation between predicted ratings and actual ratings

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

• Root Mean Square Error (*RMSE*) is similar to *MAE*, but places more emphasis on larger deviation $RMSE = \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2 \end{bmatrix}$

Implicit Feedback: Precision and Recall

- Precision: a measure of exactness, determines the fraction of relevant items retrieved out of all items retrieved
 - E.g. the proportion of recommended movies that are actually good

$$Precision = \frac{tp}{tp + fp} = \frac{|good movies recommended|}{|all recommendations|}$$

- Recall: a measure of completeness, determines the fraction of relevant items retrieved out of all relevant items
 - E.g. the proportion of all good movies recommended

$$Recall = \frac{tp}{tp + fn} = \frac{|good movies recommended}{|all \ good movies|}$$

More Implicit Feedback Measures

- Precision@k; recall@k
- AUC:
 - Area under ROC curve
- Area under Precision-Recall Curve
- MRR:
 - Mean reciprocal rank over a set of queries Q
 - $MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}$, $rank_i$ is the rank position of the first relevant item for the ith query

Recommender Systems

- What is Recommender System?
- Collaborative Filtering
- Content-based Recommendation *(*
- Hybrid methods
- Evaluation Metrics
- Summary

Summary

Recommendation

- User-based CF, matrix factorization-based CF
- Explicit feedback, implicit feedback
- Content-based recommendation
- Hybrid methos
- Evaluation

References

- <u>http://ijcai13.org/files/tutorial_slides/td3.</u>
 <u>pdf</u>
- <u>http://research.microsoft.com/pubs/1153</u>
 <u>96/EvaluationMetrics.TR.pdf</u>
- <u>https://datajobs.com/data-science-</u> repo/Recommender-Systems-[Netflix].pdf
- http://www.librec.net/tutorial.html